Menu
Connexion
Maths-Quiz
Recherche Quiz 6ème Quiz 5ème Quiz 4ème Quiz 3ème Contact
Retour à la liste des quiz
sanscalculatrice
QUIZ
Développement : double distributivité (QCM)
Développer et réduire :
Question 1 :
$(\,3\,x+\,2)\;(\,y+\,3) = $ ?
$\,4\,\,x\,y +\,6\,\,x +\,3\,\,y +\,5$ $\,3\,\,x\,y +\,6$ $\,3\,\,x\,y +\,9\,\,x +\,2\,\,y +\,6$ $\,14\,\,x^2\,y^2 +\,6$
Question 2 :
$(\,5+\,3\,b)\;(\,b+\,6) = $ ?
$\,3\,\,b^2 +\,30$ $\,3\,\,b^2 +\,23\,\,b +\,30$ $\,4\,\,b^2 +\,15\,\,b +\,11$ $\,26\,\,b +\,30$
Question 3 :
$(\,x+\,4)\;(\,1+\,y) = $ ?
$\,\,x\,y +\,4$ $\,6\,\,x^2\,y^2 +\,4$ $\,2\,\,x +\,2\,\,x\,y +\,5 +\,5\,\,y$ $\,\,x +\,\,x\,y +\,4 +\,4\,\,y$
Question 4 :
$(\,1+\,3\,y)\;(\,4+\,y) = $ ?
$\,4\,\,y^2 +\,9\,\,y +\,5$ $\,16\,\,y +\,4$ $\,3\,\,y^2 +\,4$ $\,3\,\,y^2 +\,13\,\,y +\,4$
Question 5 :
$(\,3\,a+\,2)\;(\,b\,-4) = $ ?
$\,3\,\,a\,b +\,12\,\,a +\,2\,\,b \,-8$ $\,-3\,\,a\,b \,-12\,\,a \,-2\,\,b \,-8$ $\,3\,\,a\,b \,-12\,\,a +\,2\,\,b \,-8$ $\,3\,\,a\,b +\,12\,\,a \,-2\,\,b \,-8$
Question 6 :
$(\,3\,-6\,y)\;(\,-5+\,x) = $ ?
$\,-15 +\,3\,\,x +\,30\,\,y \,-6\,\,x\,y$ $\,15 +\,3\,\,x +\,30\,\,y \,-6\,\,x\,y$ $\,-15 +\,3\,\,x \,-30\,\,y +\,6\,\,x\,y$ $\,15 \,-3\,\,x +\,30\,\,y \,-6\,\,x\,y$
Question 7 :
$(\,2\,-3\,y)\;(\,1+\,6\,y) = $ ?
$\,18\,\,y^2 +\,15\,\,y +\,2$ $\,-18\,\,y^2 +\,9\,\,y \,-2$ $\,-18\,\,y^2 +\,9\,\,y +\,2$ $\,18\,\,y^2 +\,9\,\,y +\,2$
Question 8 :
$(\,t\,-2)\;(\,-4\,x\,-6) = $ ?
$\,-4\,\,t\,x +\,6\,\,t +\,8\,\,x \,-12$ $\,4\,\,t\,x \,-6\,\,t +\,8\,\,x \,-12$ $\,4\,\,t\,x \,-6\,\,t \,-8\,\,x +\,12$ $\,-4\,\,t\,x \,-6\,\,t +\,8\,\,x +\,12$
Question 9 :
$(\,6\,-4\,t)\;(\,-\,t+\,6) = $ ?
$\,-4\,\,t^2 +\,18\,\,t +\,36$ $\,4\,\,t^2 +\,30\,\,t +\,36$ $\,-4\,\,t^2 \,-30\,\,t \,-36$ $\,4\,\,t^2 \,-30\,\,t +\,36$
Question 10 :
$(\,6\,x\,-3)\;(\,-1\,-\,x) = $ ?
$\,-6\,\,x^2 +\,3\,\,x +\,3$ $\,-6\,\,x^2 +\,9\,\,x \,-3$ $\,6\,\,x^2 \,-3\,\,x \,-3$ $\,-6\,\,x^2 \,-3\,\,x +\,3$