Menu
Connexion
Maths-Quiz
Recherche Quiz 6ème Quiz 5ème Quiz 4ème Quiz 3ème Contact
Retour à la liste des quiz
aveccalculatrice
QUIZ
Méthode : Contraposée du théorème de Thalès
Exercice n°1
RCVGU U ∈ [RV] et G ∈ [RC] RG = 7,1 cm RC = 8,8 cm RU = 8,1 cm RV = 9,9 cm On veut montrer que les droites (VC) et (UG) ne sont pas parallèles.
Question 1 :
Quels rapports de longueurs faut-il comparer ?
$\dfrac{RG}{RC}$ et $\dfrac{UG}{VC}$ $\dfrac{RG}{RC}$ et $\dfrac{RU}{RV}$ $\dfrac{RG}{RC}$ et $\dfrac{RV}{RU}$ $\dfrac{RG}{GC}$ et $\dfrac{RU}{UV}$ $\dfrac{RG}{VC}$ et $\dfrac{RU}{RV}$
Question 2 :
$\dfrac{RG}{RC} = \dfrac{7,1}{8,8} = \dfrac{71}{88}$ et $\dfrac{RU}{RV} = \dfrac{8,1}{9,9} = \dfrac{9}{11}$ Donc ...
$\dfrac{RG}{RC} = \dfrac{RU}{RV}$ $\dfrac{RG}{RC} \neq \dfrac{RU}{RV}$
Question 3 :
On peut utiliser :
la contraposée du théorème de Thalès la réciproque du théorème de Thalès le théorème de Thalès
Question 4 :
D'après la contraposée du théorème de Thalès :
Les droites (VC) et (UG) ne sont pas parallèles. Les droites (VC) et (UG) sont parallèles.
Exercice n°2
ROMLE R ∈ (EM) et R ∈ (LO) RL = 4,1 cm RO = 5,6 cm RE = 3,5 cm RM = 4,9 cm On veut montrer que les droites (MO) et (EL) ne sont pas parallèles.
$\dfrac{RL}{RO}$ et $\dfrac{RE}{RM}$ $\dfrac{RL}{MO}$ et $\dfrac{RE}{RM}$ $\dfrac{RL}{RO}$ et $\dfrac{RM}{RE}$ $\dfrac{RL}{LO}$ et $\dfrac{RE}{EM}$ $\dfrac{RL}{RO}$ et $\dfrac{EL}{MO}$
$\dfrac{RL}{RO} = \dfrac{4,1}{5,6} = \dfrac{41}{56}$ et $\dfrac{RE}{RM} = \dfrac{3,5}{4,9} = \dfrac{5}{7}$ Donc ...
$\dfrac{RL}{RO} \neq \dfrac{RE}{RM}$ $\dfrac{RL}{RO} = \dfrac{RE}{RM}$
Les droites (MO) et (EL) ne sont pas parallèles. Les droites (MO) et (EL) sont parallèles.